JFIF$        dd7 

Viewing File: /usr/src/kernels/5.14.0-570.30.1.el9_6.x86_64/tools/include/linux/log2.h

/* SPDX-License-Identifier: GPL-2.0-or-later */
/* Integer base 2 logarithm calculation
 *
 * Copyright (C) 2006 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells (dhowells@redhat.com)
 */

#ifndef _TOOLS_LINUX_LOG2_H
#define _TOOLS_LINUX_LOG2_H

#include <linux/bitops.h>
#include <linux/types.h>

/*
 * non-constant log of base 2 calculators
 * - the arch may override these in asm/bitops.h if they can be implemented
 *   more efficiently than using fls() and fls64()
 * - the arch is not required to handle n==0 if implementing the fallback
 */
static inline __attribute__((const))
int __ilog2_u32(u32 n)
{
	return fls(n) - 1;
}

static inline __attribute__((const))
int __ilog2_u64(u64 n)
{
	return fls64(n) - 1;
}

/*
 *  Determine whether some value is a power of two, where zero is
 * *not* considered a power of two.
 */

static inline __attribute__((const))
bool is_power_of_2(unsigned long n)
{
	return (n != 0 && ((n & (n - 1)) == 0));
}

/*
 * round up to nearest power of two
 */
static inline __attribute__((const))
unsigned long __roundup_pow_of_two(unsigned long n)
{
	return 1UL << fls_long(n - 1);
}

/*
 * round down to nearest power of two
 */
static inline __attribute__((const))
unsigned long __rounddown_pow_of_two(unsigned long n)
{
	return 1UL << (fls_long(n) - 1);
}

/**
 * ilog2 - log of base 2 of 32-bit or a 64-bit unsigned value
 * @n - parameter
 *
 * constant-capable log of base 2 calculation
 * - this can be used to initialise global variables from constant data, hence
 *   the massive ternary operator construction
 *
 * selects the appropriately-sized optimised version depending on sizeof(n)
 */
#define ilog2(n)				\
(						\
	__builtin_constant_p(n) ? (		\
		(n) < 2 ? 0 :			\
		(n) & (1ULL << 63) ? 63 :	\
		(n) & (1ULL << 62) ? 62 :	\
		(n) & (1ULL << 61) ? 61 :	\
		(n) & (1ULL << 60) ? 60 :	\
		(n) & (1ULL << 59) ? 59 :	\
		(n) & (1ULL << 58) ? 58 :	\
		(n) & (1ULL << 57) ? 57 :	\
		(n) & (1ULL << 56) ? 56 :	\
		(n) & (1ULL << 55) ? 55 :	\
		(n) & (1ULL << 54) ? 54 :	\
		(n) & (1ULL << 53) ? 53 :	\
		(n) & (1ULL << 52) ? 52 :	\
		(n) & (1ULL << 51) ? 51 :	\
		(n) & (1ULL << 50) ? 50 :	\
		(n) & (1ULL << 49) ? 49 :	\
		(n) & (1ULL << 48) ? 48 :	\
		(n) & (1ULL << 47) ? 47 :	\
		(n) & (1ULL << 46) ? 46 :	\
		(n) & (1ULL << 45) ? 45 :	\
		(n) & (1ULL << 44) ? 44 :	\
		(n) & (1ULL << 43) ? 43 :	\
		(n) & (1ULL << 42) ? 42 :	\
		(n) & (1ULL << 41) ? 41 :	\
		(n) & (1ULL << 40) ? 40 :	\
		(n) & (1ULL << 39) ? 39 :	\
		(n) & (1ULL << 38) ? 38 :	\
		(n) & (1ULL << 37) ? 37 :	\
		(n) & (1ULL << 36) ? 36 :	\
		(n) & (1ULL << 35) ? 35 :	\
		(n) & (1ULL << 34) ? 34 :	\
		(n) & (1ULL << 33) ? 33 :	\
		(n) & (1ULL << 32) ? 32 :	\
		(n) & (1ULL << 31) ? 31 :	\
		(n) & (1ULL << 30) ? 30 :	\
		(n) & (1ULL << 29) ? 29 :	\
		(n) & (1ULL << 28) ? 28 :	\
		(n) & (1ULL << 27) ? 27 :	\
		(n) & (1ULL << 26) ? 26 :	\
		(n) & (1ULL << 25) ? 25 :	\
		(n) & (1ULL << 24) ? 24 :	\
		(n) & (1ULL << 23) ? 23 :	\
		(n) & (1ULL << 22) ? 22 :	\
		(n) & (1ULL << 21) ? 21 :	\
		(n) & (1ULL << 20) ? 20 :	\
		(n) & (1ULL << 19) ? 19 :	\
		(n) & (1ULL << 18) ? 18 :	\
		(n) & (1ULL << 17) ? 17 :	\
		(n) & (1ULL << 16) ? 16 :	\
		(n) & (1ULL << 15) ? 15 :	\
		(n) & (1ULL << 14) ? 14 :	\
		(n) & (1ULL << 13) ? 13 :	\
		(n) & (1ULL << 12) ? 12 :	\
		(n) & (1ULL << 11) ? 11 :	\
		(n) & (1ULL << 10) ? 10 :	\
		(n) & (1ULL <<  9) ?  9 :	\
		(n) & (1ULL <<  8) ?  8 :	\
		(n) & (1ULL <<  7) ?  7 :	\
		(n) & (1ULL <<  6) ?  6 :	\
		(n) & (1ULL <<  5) ?  5 :	\
		(n) & (1ULL <<  4) ?  4 :	\
		(n) & (1ULL <<  3) ?  3 :	\
		(n) & (1ULL <<  2) ?  2 :	\
		1 ) :				\
	(sizeof(n) <= 4) ?			\
	__ilog2_u32(n) :			\
	__ilog2_u64(n)				\
 )

/**
 * roundup_pow_of_two - round the given value up to nearest power of two
 * @n - parameter
 *
 * round the given value up to the nearest power of two
 * - the result is undefined when n == 0
 * - this can be used to initialise global variables from constant data
 */
#define roundup_pow_of_two(n)			\
(						\
	__builtin_constant_p(n) ? (		\
		(n == 1) ? 1 :			\
		(1UL << (ilog2((n) - 1) + 1))	\
				   ) :		\
	__roundup_pow_of_two(n)			\
 )

/**
 * rounddown_pow_of_two - round the given value down to nearest power of two
 * @n - parameter
 *
 * round the given value down to the nearest power of two
 * - the result is undefined when n == 0
 * - this can be used to initialise global variables from constant data
 */
#define rounddown_pow_of_two(n)			\
(						\
	__builtin_constant_p(n) ? (		\
		(1UL << ilog2(n))) :		\
	__rounddown_pow_of_two(n)		\
 )

#endif /* _TOOLS_LINUX_LOG2_H */
Back to Directory  nL+D550H?Mx ,D"v]qv;6*Zqn)ZP0!1 A "#a$2Qr D8 a Ri[f\mIykIw0cuFcRı?lO7к_f˓[C$殷WF<_W ԣsKcëIzyQy/_LKℂ;C",pFA:/]=H  ~,ls/9ć:[=/#f;)x{ٛEQ )~ =𘙲r*2~ a _V=' kumFD}KYYC)({ *g&f`툪ry`=^cJ.I](*`wq1dđ#̩͑0;H]u搂@:~וKL Nsh}OIR*8:2 !lDJVo(3=M(zȰ+i*NAr6KnSl)!JJӁ* %݉?|D}d5:eP0R;{$X'xF@.ÊB {,WJuQɲRI;9QE琯62fT.DUJ;*cP A\ILNj!J۱+O\͔]ޒS߼Jȧc%ANolՎprULZԛerE2=XDXgVQeӓk yP7U*omQIs,K`)6\G3t?pgjrmۛجwluGtfh9uyP0D;Uڽ"OXlif$)&|ML0Zrm1[HXPlPR0'G=i2N+0e2]]9VTPO׮7h(F*癈'=QVZDF,d߬~TX G[`le69CR(!S2!P <0x<!1AQ "Raq02Br#SCTb ?Ζ"]mH5WR7k.ۛ!}Q~+yԏz|@T20S~Kek *zFf^2X*(@8r?CIuI|֓>^ExLgNUY+{.RѪ τV׸YTD I62'8Y27'\TP.6d&˦@Vqi|8-OΕ]ʔ U=TL8=;6c| !qfF3aů&~$l}'NWUs$Uk^SV:U# 6w++s&r+nڐ{@29 gL u"TÙM=6(^"7r}=6YݾlCuhquympǦ GjhsǜNlɻ}o7#S6aw4!OSrD57%|?x>L |/nD6?/8w#[)L7+6〼T ATg!%5MmZ/c-{1_Je"|^$'O&ޱմTrb$w)R$& N1EtdU3Uȉ1pM"N*(DNyd96.(jQ)X 5cQɎMyW?Q*!R>6=7)Xj5`J]e8%t!+'!1Q5 !1 AQaqё#2"0BRb?Gt^## .llQT $v,,m㵜5ubV =sY+@d{N! dnO<.-B;_wJt6;QJd.Qc%p{ 1,sNDdFHI0ГoXшe黅XۢF:)[FGXƹ/w_cMeD,ʡcc.WDtA$j@:) -# u c1<@ۗ9F)KJ-hpP]_x[qBlbpʖw q"LFGdƶ*s+ډ_Zc"?%t[IP 6J]#=ɺVvvCGsGh1 >)6|ey?Lӣm,4GWUi`]uJVoVDG< SB6ϏQ@ TiUlyOU0kfV~~}SZ@*WUUi##; s/[=!7}"WN]'(L! ~y5g9T̅JkbM' +s:S +B)v@Mj e Cf jE 0Y\QnzG1д~Wo{T9?`Rmyhsy3!HAD]mc1~2LSu7xT;j$`}4->L#vzŏILS ֭T{rjGKC;bpU=-`BsK.SFw4Mq]ZdHS0)tLg